Imágenes de páginas
PDF
EPUB

very type of the rock on which the oldest strata of the earth were founded, is said to have burst forth during the later tertiary period. We learn from Russegger, that the low land which lies between the Mediterranean and the range of hills that extends from Cairo to the Red Sea at Suez, and of which hills a nummulite limestone constitutes a great part, is composed of a sandstone which he calls a "Meeresdiluvium," a marine diluvial formation, and considers to be of an age younger than that of the sub-appennines. This sandstone he found associated with the granite above Assuan, and covering the cretaceous sandstone far into Nubia. It appears, therefore, that, in the later ages of the tertiary period, this north-eastern part of Africa must have been submerged, and that very energetic plutonic action was going forward in the then bed of the sea. The remarkable fact of the granite bursting through this modern sandstone is thus described by Russegger :

*

"We arrived at a plateau of the Arabian Chain south-east of Assuan. It is about 200 feet above the bed of the Nile, and consists of the lower and upper sandstone, which are penetrated by innumerable granite cones from 20 to 100 feet in height, arranged over the plateau in parallel lines, very much resembling volcanic cones rising from a great cleft. The sandstone is totally altered in texture near the granite, and has all the appearance as if it had been exposed to a great heat. I cannot refrain,' he says, 'from supposing that the granite must have burst, like a volcanic product, through long wide rents in the sandstone, and that, in this way, the conical hills were formed." "t

An eruption of a true granite during the period of the sub-appennine formations, one possessing the same mineral structure as that we know to have been erupted during the period of the paleozoic rocks, would be a fact of so extraordinary a kind, that its age would require to be established on the clearest evidence, and especially by that of organic remains in the sandstone.

Having thus ventured-I trust without any want of the respect due to so eminent a person to reject the hypothesis proposed by Professor Lepsius for the high levels of the Nile at Semne, indicated by the sculptured marks he discovered, it may perhaps be expected that I should offer another more probable explanation. If in some narrow gorge of the river below Semne, a place had been described by any traveller, where, from the nature of the banks, a great landslip, or even an artificial dam, could have raised the bed to an adequate height; that is, proportionate to the fall of the river, as it was more distant from Semne, a bar that, in the course of a few centuries, might have been gradually washed away, I might have ventured to suggest such a solution of the problem. But without any information of the existence of such a contraction of the river's channel, or

* Reisen, Bd. I., s. 273.

† Id., Bd. II., I. Thl. s. 328.

any exact knowledge of the natural outlets and dams to running water along the 250 miles of the Nile Valley, from Semne to Assuan, it would be idle to offer even a conjecture. These marks are unquestionably very difficult to account for, in the present imperfect state of our knowledge of the structure of that portion of the Nile Valley; and any competent geologist, well versed in the questions of physical structure involved, who may hereafter visit Nubia, would have a very interesting occupation in endeavouring to solve the difficulty.

7th April 1850,

On the Salmon Tribe (Salmonidæ.)

So long as the family Salmonida remains circumcribed as it was established by Cuvier, it seems to be a type almost universally diffused over the globe, occurring equally in the sea and in fresh-water, so that we are left almost without a clue to its natural relations to the surrounding world. Joh. Muller, working out some suggestions of Prince Canino, and introducing among them more precise anatomical characters, had no sooner sub-divided the old family of Salmonidæ into his Salmonida, Characini, and Scopelini, than light immediately spread over this field. Limited now to such fishes as, in addition to the mere general character of former Salmonidæ, have a false gill on the inner surface of the operculum, the Salmonido appeared at once as fishes peculiar to the northern temperate region, occurring in immense numbers all around the Artic Sea, and running regularly up the rivers at certain seasons of the year to deposit their spawn, while some live permanently in fresh water. We have thus in the true Salmonido actually a northern family of fishes, which, when found in more temperate regions, occurs there in clear mountain rivers, sometimes very high above the level of the sea, near the limits of perpetual snow, or in deep, cold lakes, That this family is adapted to the cold regions is most remarkably exemplified by the fact that they all spawn late in the season, at the approach of autumn or winter, when frost or snow has reduced the temperature of the water in which they live nearly to its lowest natural point. The embryos

grow within the egg very slowly for about two months before they are hatched; while fecundated eggs of some other families which spawn in spring and summer, give birth to young fishes a few days after they are laid. The Salmonida, on the contrary, are born at an epoch when the waters are generally frozen up; that is at a period when the maximum of temperature is at the bottom of the water, where the eggs and young salmons remain among gravel, surrounded by a medium which scarcely ever rises above thirty or forty degrees.

It is plain from these statements, and from what we know otherwise of the habits of this family, that there is no one upon the globe living under more uniform circumstances, and nevertheless the species are extremely diversified, and we find peculiar ones in all parts of the world, where the family occurs at all. Thus we find in Lake Superior species which do not exist in the course of the Mackenzie or Saskatchawan, and vice versa; others in the Columbia river which differ from those of the Lena, Obi, and Yenisei, while Europe again has its peculiar forms.

Whoever takes a philosophical view of the subject of Natural History, and is familiar with the above stated facts, will now understand why, notwithstanding the specific distinctions there are between them, the trouts and white fishes are so uniform all over the globe. It must be acknowledged that it is owing to the uniformity of the physical condition in which they occur, and to which they are so admirably adapted by their anatomical structure, as well as by their instinct. Running up and down the rapid rivers and mountain currents, leaping even over considerable waterfalls, they are provided with most powerful and active muscles; their tail is strong and fleshy, and its broad basis indicates that its power is concentrated; it is like the paddle of the Indian who propels his canoe over the same waters. Their mouth is large, their jaw strong, their teeth powerful, to enable them to secure with ease the scanty prey with which they meet in these deserts of cold water; and, nevertheless, though we cannot but be struck by the admirable reciprocal adaptation between the structure of the northern animals and the physical condition in which they live, let us not mistake these adaptations VOL. XLIX. NO. XCVII.-JULY 1850.

K

for a consequence of physical causes; let us not say that trouts resemble each other so much because they originated under uniform conditions; let us not say they have uniform habits because there is no scope for diversity; let us not say they spawn during winter, and rear their young under snow and ice, because at that epoch they are safer from the attacks of birds of prey; let us not say they are so intimately connected with the physical world, because physical powers called them into existence; but let us once look deeper, let us recognise that this uniformity is imparted to a wonderfully complicated structure: they are trouts with all their admirable structure, their peculiar back-bones, their ornamented skull, their powerful jaws, their moveable eyes, with their thick, fatty skin and elegant scales, their ramified fin rays, and with all that harmonious complication of structure which characterizes the type of trouts, but over which a uniform robe, as it were, is spread in a manner not unlike an almost endless series of monotonous variations upon one brilliant air, through the uniformity of which we still detect the same melody, however disguised under the many undulations and changes of which it is capable.

The instincts of trouts are not more controlled by climate than those of other animals under different circumstances. They are only made to perform at a particular season, best suited to their organization, what others do at other times. If it were not so, I do not see why all the different fishes, living all the year round in the same brook, should not spawn at the same season, and finally be transformed into one type; have we not, on the contrary, in this diversity under identical circumstances, a demonstrative evidence that there is another cause which has acted, and is still acting, in the production and preservation of these adaptations; a cause which endowed living beings with the power of resisting the equalizing influence of uniform agents, though at the same time placing these agents and living beings under definite relations to each other?

That trouts are not more influenced by physical conditions than other animals is apparent from the fact that there are lakes of small extent and of most uniform features, in which

two or three species of trout occur together, each with peculiar habits; one more migratory, running up rivers during the spawning season, &c., while the other will never enter running waters, and will spawn in quiet places near the shore; one will hunt after its prey, while the other will wait for it in ambuscade; one will feed upon fish, the other upon insects. Here we have an example of species with different habits, where there would scarcely seem to be room for diversity in the physical condition in which they live; again, there are others living together in immense sheets of water, where there would seem to be ample scope for diversity, among which we observe no great differences, as is the case between the Siscowet and the lake trout in the great northern lakes.

If these facts, statements, and inductions were not sufficient to satisfy the reader of the correctness of my views, I would at once refer to another material fact, furnished us by the family of Salmonida, namely, the existence of two essential modifications of the true type of trouts, occurring everywhere together under the same circumstances, showing the same general characters, back-bones, skull, brain, composition of the mouth, intestines, gills, &c., &c., but differing in the size of the mouth, and in the almost absolute want of teeth, these groups being that of the white fishes, Coregoni, and that of the true trouts, Salmones.

Now, I ask, where is there, within the natural geographical limits of distribution of Salmonida, a discriminating power between the physical elements under which they live, which could have introduced these differences?—a discriminating power which, allotting to all certain characters, should have modified others to such an extent as to produce apparently different types under the same modification of the general plan of structure. Why should there be, at the same time, under the same circumstances, under the same geographical distribution, white fishes with the habits of trouts,spawning like them in the fall, growing their young like them during winter,—if there were not an infinitely wise Supreme Power, if there were not a personal God, who, having first designed, created the universe, and modelled our solar system, called successively, at different epochs, such animals into

« AnteriorContinuar »