Imágenes de páginas
PDF
EPUB

Again, with what solicitude those of us who have gardens wait to see what will have survived the iron grip of winter in our favourite flower borders, and how frequently we have to face blanks in the ranks of some of its most cherished occupants! Numerous bacteriologists, however, have now confirmed this fact, the fields of ice and snow have been repeatedly explored for microorganisms, and it has been shown how even the ice on the summit of Mont Blanc has its complement of bacterial flora, that hailstones as they descend upon the earth contain bacteria, that snow, the emblem of purity, is but a whited sepulchre, and will on demand deliver up its bacterial hosts. Quite apart from its general scientific interest, the bacterial occupation of ice is of importance from a hygienic point of view, and a large number of examinations of ice as supplied for consumption have been made. Thus, Professor Fraenkl and also Dr. Heyroth have submitted the ice-supply of the city of Berlin to an exhaustive bacteriological examination. These investigations showed that the bacterial population of ice as supplied to Berlin is a very variable one, and fluctuates between great extremes, rising to as many as 25,000 bacteria in a cubic centimetre (about twenty drops) of ice-water, and falling to as few as two in the same measure.

There are numerous circumstanccs which come into play in determining the density of the bacterial population in ice. First, of course, the initial quality of the water from which the ice is derived is a factor of great importance, for the purer the water the fewer will be the bacteria found in the resulting ice.

Again, if the ice field is wind-swept by air bearing an unduly rich complement of bacteria, as may be expected in the vicinity of populous cities, for example, then the ice will reflect in its bacterial contents the undesirable neighbourhood in which it was produced. Water in repose, again, yields purer ice than water in movement during freezing, for during rest opportunity is given for the bacteria present in suspension to subside, the process of sedimentation or deposition of bacteria which takes place under these conditions playing an important part in water-purification; when, however, the water is disturbed by swift currents, or agitated by storms, this process is interrupted, and the bacteria become entangled in the ice and frozen in situ.

The importance attaching to the physical conditions under which ice is produced in enabling an estimate to be formed of the safety or otherwise of the same for consumption may be gathered

from the following extract from an American report on the subject :—

"On the whole it is evident that the conditions surrounding water when it freezes are very important factors in determining the purity of the ice formed. If there is a considerable depth of water in portions of a somewhat polluted pond or river, and the ice is formed. in these portions in comparatively quiet water with but little matter in suspension, this ice will probably be entirely satisfactory for domestic use. On the other hand, ice formed in shallow portions of such ponds or rivers, even during still weather, or in any portion if there is a considerable movement of the water by currents or wind while it is forming, may be rendered by these conditions entirely unfit for domestic use."

We have learnt that ice contains bacteria, that its bacterial contents are to a certain extent dependent upon the bacterial quality of the water before crystallisation, and that an important factor in determining its purity is afforded by the physical conditions prevailing at the time of freezing.

It will be of interest to ascertain in more detail what effect the process of freezing has upon the number of bacteria present in the water-what is the degree of bacterial purification effected during the conversion of water into ice.

Now Professor Uffreduzzi, in his investigations

on the ice-supply of Turin, part of which is derived from a much-polluted portion of the River Dora, found that about 90 per cent. less bacteria were present in the ice than were present in the water from which it was produced. In the making of ice, therefore, a remarkable removal of bacteria may be effected which approaches very nearly the degree of bacterial purification which is achieved during the best-conducted sandfiltration of water.

Uffreduzzi's results have been repeatedly confirmed by other researches. Thus, in regard to ice obtained from the River Merrimac, water which contained originally about 38,600 bacteria per cubic centimetre, on its conversion into ice had only from three to six. Sewage, again, containing about a million and a half bacteria per cubic centimetre after being frozen only contained under 74,000. It should be mentioned that this last figure represented the number of bacteria obtained by thawing the outside of the sewage ice-cake; inside the cake there were more found-about 121,000. The difference in these figures is due to the fact that, whereas the outer layers of ice looked quite clear, towards the centre the ice contained sewage sludge and hence more bacteria had become arrested; but in spite of this the bacterial purification effected is very striking,

although not sufficient to render the use of ice from such a polluted source either palatable or desirable.

It is, of course, a well-known fact that water possesses the power of purifying itself during its transformation into ice, and that the process of crystallisation not only prevents a considerable proportion of the matters in suspension from becoming embodied in the ice, but also eliminates a large percentage of the matters in solution, the latter being driven from the water which is being frozen into the water beneath. If, therefore, ice in the act of forming can get rid of matters in solution, it is not difficult to understand how it can eject bacteria, which though so minute are yet bodies of appreciable dimension and in suspension. But that there are limits to this power of excluding bacteria, and that, as in the case of other mechanical processes, an overtaxing of the available resources is at once reflected in the inferiority of the product, is shown by the frozen sewage experiment, in which the ice, having had too large a supply of bacteria in the first instance to deal with, was unable to get rid of more than a certain proportion, and was obliged to retain a very considerable number. Hence great as is the degree of purification achieved by ice in forming, yet it must be recognised that its powers in this

« AnteriorContinuar »