Imágenes de páginas


[ocr errors]

radius was arranged to take buoys every 175 feet, that being half the length covered at each sweep. This length was selected in order that the eyes permanently wired to the cable to receive the buoys might also be the distance graduations, to avoid the possibility of error.

The sweep was composed of a float or raft of cedar, in sections 20 feet long, and of a line of 2-inch gas pipes of the same length, depending from the float by wire cables. The float sections were strongly and flexibly connected, and the gas pipes were joined by toggles. The joints of the pipe were vertically below those of the float, so that the whole system consisted of a series of flexible parallelograms, each length of pipe being always parallel to the corresponding section of the float. Each of the suspending cables turned 90° over a pulley and was lashed to a cable running the entire length of the float, called the messenger." By hauling on the messenger" all the suspending wires were lifted equally and simultaneously, or in other words the line of gas pipe was lifted parallel to its first position, but higher in the water.

Two sweeps were used, having 9 and 10 sections, or 180 and 200 feet length. The tug was placed between them, the shorter one upstream, and having the radius cable attached toits upper end. The axes of the sweeps were parallel with and that of the tug athwart the current. Guy lines to bow and stern of the tug kept the system in the desired position. The space under the boat was filled by a length of pipe dropped over the bow and hanging from the gunwales, and which con.. nected the two sweeps, making a line of pipe 390 feet long up and down stream and 21 feet below the low-water plane. At each swarth the radius cable was lengthened 350 feet, so that there was a lap of 40 feet to insure against gaps. By working the engine ahead or backward the entire system was moved across the channel, running parallel to itself and following the arc of a curve determined by the radius.

The indicating device was simple and very efficient. At every second suspending cable a staff was placed, submerged about 4 feet and attached at its lower end by a spring-clip to the suspending cable. It was pivoted on the float in the plane of the cable and extended 6 feet above the water with a flag at the top. It thus prolonged and made visible the direction of the cable extending from the float to the pipe. Itis plain that, it in moving across the channel the pipe met any obstruction, it would be held fast while the float moved on, so that the suspending wire, and consequently the staffs, would be inclined in the direction of motion. The effect was very pronounced, the “bowing” of the staff's being plainly and instantly visible. The boat was stopped in such cases and the messenger hauled in until the staffs resumed the vertical position, which they did suddenly and with a movement not to be mistaken. At that moment the messenger was stopped and the position of a zero point read on a scale which gave directly the depth of the pipes below the datum plane. That deptlı was recorded as the least depth on the shoal.

At the same time a buoy was dropped on the highest point of the shoal. At first the buoy was located by transit intersections and quite independently of the sweeping apparatus. Observation of the accuracy with which the striking of known shoals could be predicted inspired such confidence in the sweep as a position indicator that one transit cut was abandoned, and locations were made by the arc described by the point of the sweep where the shoal struck and one transit observation. Under the latter method the transit station was always chosen so as to rake the channel, thus making the lateral, or most important coordinate, depend wholly on the transit.

[ocr errors][ocr errors][merged small][ocr errors][ocr errors][ocr errors]

To check against any error from the dragging of the scow anchor during the sweeping a tell-tale buoy was anchored alongside the scow, which showed any movement of the latter by casual observation.

Preparations were begun early in July, and the party reached the point of beginning work at Sister Island on the 21st. After many vexatious delays, due to storms, discourtesy of captains of vessels, the novelty of the undertaking, and the incompetence of the crew of the chartered tug the work was closed on September 19 at the head of Brockville Narrows, 9! miles from the point of beginning. In this distanco 14 new shoals were discovered, the positions of which were reported immediately after the close of fieldwork.

[blocks in formation]



Tri-daily observations were made at Charlotte and at Oswego, N.
Y., on Lake Ontario, from. July 1, 1893, to June 30, 1894; at Erie
IIarbor, Pa., Ashtabula and Cleveland, Ohio, and Monroe, Mich., 0:1
Lake Brie; at Milwaukee, Wis., o Lake Michigan; and at Escanaba,
Mich., on Green Bay, from July 1 to December 16, 1893, and from
March 19 to June 30, 1994.

Daily observations were made at Sand Beach, Mich., on Lake
Huron, and at Sault Ste. Marie and Marquette, Mich., on Lake
Superior, from July 1, 1993, to June 30, 1894.

The accompanying table is a continuation of that published in the
Annual Report of the Chief of Engineers for 1893, Part vi., 1). 4381:

[ocr errors]

Monthly mean of water Ierels for the several stations velore the planes of reference atlopted

in 1870.

[merged small][ocr errors]


July. Aug. Sept. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May. June.

2. 39

2. 01

2. 96

[merged small][ocr errors][ocr errors]

Feit. Feet. Feet. Feet. Feet. Fect. Feet. Fect. Feet. Feet. Feet. Feet.
2. 05 2. 53 2.91 3. 35 3. 85 4.04 3. 69 3. 47 3. !0

3. 03 2. 87
2. 00 2.53

2. 80 3.32 3.73 3. 85 3. 54 3. 36 3. 06 3. 01 2.83 2. 30
1. 96
2. 45 2. 73 2. 90 3. 11

3. 11 3. 01 3. 20

3. 21 2.96 2. 53
2.01 2. 50 2. 77 3. 10 3. 31
3. 31 3. 14 3. 25 3. 23 2.93 2. 62

2. 12
2. 16 2. 50 2.88 3. 23 3. 63 3. 55 3. 27 3. 39 3. 36

2. 57

1. 86 2. 14 2. 5:3

3. 05
3. 55
3. 51 3. 06 3. 11
3. 07 2. 56 2. 20

3. 39 3. 56 3.88 4. 02 4.41 4. 48 4. 47

4. 18 4. 03 3. 19

3. 33 3. 63 3. 87 4. 11 4.18 4. 45 4. 69

4, 31 4. 27 3.97 3.51
3.30 3. 64 3. 93 4.14

4.37 4. 57 4, 62 4. 61 4.46 4. 23 3.83 3.53
2. 84 2. 78
2.87 2. 90 3. 06 3. 29 3. 45 3. 63 3 54

3. 39 2. 61
2. 808 2. 721 2.854 2. 913' 2. 968 3,501 3. 725 3. 809 3. 019 3.528 2.556 2.316

[ocr errors]

2. 31


[ocr errors]





Clereland, Ohio, July 9, 1891. GENERAL: I have the honor to forward herewith record of water levels on Lake Erie for the fiscal year ending June 30, 1894. The records were taken at the light-house, Monroe, Mich., and in the harbors at Cleveland and Ashtabula, Ohio, and Erie, Pa.

In connection with the record of water levels, I forward a report of
Mr. William T. Blunt, U. S. assistant engineer, upon the levels of
Lake Erie during the storm of October 14, 1893; also
copy of the map indicated in Mr. Blunt's report.
Very respectfully, your obedient servant,


Lieut. Col., Corps of Engineers. Brig. Gen. THOMAS L. CASEY,

Chief of Engineers, U. S. A.




Monthly mean water lerels for Monroe, Clereland, Ashtabula, and Eric harbors, expressed

in fiet below the plane of reference adopted in 1876; that plane being the surface of high water of 1838 and 2.34 feet abore the mean level, 1860 to 1875, inclusive.

[blocks in formation]

Iarbors at

July. Aug. Sept. Oet. ' Nov. Dec. 1 Jan. Feb. Mar. Apr. Yay. June.

Monroe, Mich..
Cleveland, Ohio.
Ashtabula, Ohio.
Erie, Pa...

Feet. Feet. Feet. Feet. Fect. Feet. Feet.' Feet. Feet. Feet. Feet.' Feet.
1. 86 2. 14 2.53

3. 05 3. 55 3.51 3. 06 3.11 3. 07 2. 56 2. 20 1. 98
2. 16 2. 50 2. 88 3. 23 3. 63 3. 55 3. 27 3, 39 3. 36 2. 96

2. 57

2. 26
2. 04
2. 50

2. 77 3. 10 3. 31 3. 31 3. 14 3. 23 3. 23 2. 93 2. 62 2. 12
1.96 2. 45 2. 73 2.90 3. 11 3. 11 3. 01 3. 20 3. 21 2. 96 2. 53 2. 04


CLEVELAND, Ohio, June 20, 1894. SIR: I have the honor to submit the following report upon the variations in the surface of Lake Erie during the westerly galo of October 14, 1893 :


[ocr errors]

The extent of Lake Erie may be divided into three well-defined basins: Tho west basin, west of the “ Islands," containing about 1,200 square miles, and having a comparatively flat bottom at 5 to 6 fathoms when away from the immediate vicinity of the shore.

The main basin, between the "Islands" on the west and the narrows at Erie and Long Point on the cast, containing about 6,700 square miles, and having a marked shelving bottom deepening gradually to 14 fathoms.

The east basin, east of the narrows, containing about 2,100 square miles, and having a deep depression of 30 fathoms just east from Long Point Island.

Between the main and east basins lies an extensive flat at 11 fathoms depth, with only a narrow cut of 12 fathoms near the American shore.

The general axis of the lake lies east northeast and west southwest, while that of the west basin makes a decided turn to west by north.

It is a well-known fact that a westerly wind lowers the water surface at the west end of the lake and raises it at the cast end, while an easterly wind has the opposite effect. The amount and extent of fall or rise varies with the force and extent of the wind. A fresh local breeze will often change the level locally, while not affecting it materially in the open. A continued, general, and strong wind will have a general effect on the surface curve of the lake, lowering it considerably at the end from which the wind blows and raising it somewhat less at the opposite end. The variations due to this cause are most marked at the extreme ends of the lake, notably at Toledo, Monroe, and Buffalo. At the mouth of Detroit River they are tempered by the continuous supply from that river. At Toledo the record in the past eight years show an extreme fall of 7 feet and an extreme rise of 5 feet. As my data are more complete for the west end and for westerly storms, this report will deal more fully with westerly gales and consequent fall at west end of lake than with the opposite.

The variation in the shoal and inclosed west basin in a continued gale is much greater than in the main basin. A high westerly wind for several hours will lower the water in the west basin 2 feet, as shown by gauge at West Sister Island, which is well toward its center. This same wind will lower the water east of the islands only a few tenths.

This change of surface, due to heavy winds, has been many times reinarked, usually in a general way, but I have no knowledge of its ever having been discussed on the basis of definite data. It would seem that the questions involved would not only be of great interest from a scientific standpoint, but would be of vital interest to navigators as enabling them to correctly judge of depths and cur. rents during a severe storm. My own observations at the west end of the lake for the past eight years bave convinced me that the subject should receive more than passing notice, and it is the purpose of this report to show a reason for that belief.

bout once in each year, usually in April, a beavy northeast storm occurs which raises the water 5 feet at the west end of the lake, and also onco in each year, usually in October, a heavy westerly gale lowers the water 7 to 7 feet. These two storms are almost certain to come and to be attended by great loss of property and life. Never until last fall have circumstances permitted me to examine personally or to investigate generally the conditions attending such storms.


On the morning of this day, while the steamer Swansea was tied up without steam, cleaning boiler, the wind freshened from northwest and all indications were for the annual low water. As often happens in such cases, the day was full of drawbacks, so that the boat could not leave the pier until 4 o'clock in the afternoon, at which time the water in the river, 5 miles from its mouth, had receded to 74 feet below mean level. A trip of unusual interest was then made to the bay. In the river, flats were showing where a few days before we had found 8 feet of water. The banks of the Straight Channel, where maps show 6 feet depth around Presque Isle, were 2 feet out of water, and for 2 miles these banks showed above water perfectly straight as if on a canal. Darkness came on as we reached the bay so that my intention of photographing the view was frustrated. As we reached the main crib in the middle of the bay we found the large Breymann dredge aground in the 17-foot channel and a reflex current rushing back against the gale with such force that the steamer could not be turned and had to remain there over night. By 9 o'clock the water had set back to within 3 feet of its normal level, notwithstanding the gale continued.

It so liappeneil that in many harbors we had inspectors at the time, but it also unfortunately happened that none of them took special measurements of the stage of water, though I obtained from them, with the help of others, a very fair general idea of it. The general level of the lake before and after the storm was 0.7 foot below mean level of 1860-'75 as used for our datum plane. This general level must of course be used in discussing the effects of this storm. The variations from this level at different points, together with notes showing their reliability, are given below:

[merged small][merged small][merged small][merged small][ocr errors]


Amherstburg, inside
mouth of Detroit



[ocr errors][merged small]


[ocr errors][merged small][ocr errors][merged small][ocr errors]


P. m

[ocr errors][merged small]



Gauge maintained by Gen. Poe; showed extreme at 4 p. 4

m., and nearly the same at 11 a. m. to 5:30 p. m.
Light-keeper measured at noon, -6.2 feet, and thinks it p. m

was about 0.6 to 1.0 foot lower in the afternoon.
Measured by writer at Adams street, 5 miles from bay.... 3:30 p. m..
Estimate at mouth of river, by appearance of banks. 5 p. m.
Estimate liy light-keeper at main crib in bay.

4 pm.
Light-keeper walked dry-shod around the pier, where

P. m
depth at mean level is about 6 feet.
Light-keeper says 5 feet below usual; could have walked

around pier but for sea.
Inspector's estimate at pier, -2.8 feet. Crib light keeper 4 p.m.

took sounding in boat house; sounding afterward' at
known stage gives--
Light-keeper says at least 3 feet below ordinary; others

p. m
same; could walk half way to light-houge; soundings

Light-keeper estimated 1 foot below bottom of gauge..
Inspector's estimate, 3 feet or more below mean level; P. m

others, 4 feet.
Regular gange reading at 12 and 6 o'clock, cach

$ 12 m

6 p. m..
All say very low ; light-keeper thinks 8 to 10 inches be.

low fornier level.
Inspector's gauge: Noon, -0.1; 6 p. m., -1.3
Inspector's gauge: Noon, 3.4; 4 p. m., +3.4.

12 m

4 p. m. Gauge reading furnished by Maj. Ruffner as extreme.

1 p. m.. .do.

10 a. m.

-- 2.8

Black River.

P. m



[ocr errors][merged small]




[merged small][merged small][ocr errors][merged small]

It is also to be noted that both Erie and Buffalo show a minimum gange of —0.8
and -2.8, respectively, at 2 al. m., giving a range of 8.1 at Buffalo during this storm.
It will further be noted in the weather record below that at Buffalo the wind was
from the eastward until 2 a. m., and about the same at Erie.

A tracing accompanies this report showing a contour map of Lake Erie and a pro-
file of the water-surface curve along its south shore.

During this storm the weather conditions, as courteously furnished me by the var-
ious observers, were as follows:

Toledo.-Light easterly winds on 13th, rain in evening. Wind backed to north and northwest about midnight, increasing in force, and blew from northwest continuously till 5 ?. m., 15tlı, when it becamo variable and dropped to 6-mile velocity. Maximuin velocity 38 miles northwest at 10:30 a. m., 14th; general velocity, 20 to 30 miles north west; minimum barometer, 28.46, 2 a. m., 14th.

Sandusky.-Easterly winds, 13th, light. Wind increased and backed to northeast in afternoon. High westerly winds from 2 p. m. to midnight, 14th, and continued till evening, 15th, when shifted to northerly.

Clereland.- Barometer, midnight 13th, 28.33. At 7 p.m., 13th, increasing southeast
winci had backed to northeast 27 miles. At 8 p. m. backed to northwest and increased
to 32 miles; backed to southwest 35 miles and reached 46 miles west at 2 a. m., 14th,
and 48 southwest at 2:40 p. m., 14th. Minimum barometer 28.20 at 2 a. m., 14th, then
rose steadily. Galo continued on 15th from southwest and north west 41 miles max-
imam at 2:50 p. m.

Erie. - Wind southeast forenoon of 13th backed to northeast in afternoon. Barom-
eter fell rapidly. Windstorm began early in morning, maximum 34 miles south-
east at 4:15. Another windstorm began at 8:30 p. m. and reached maximum of 42
southwest at 10:10 a. m., 11th. Iligh wind began 5:30 a. m., velocity 30 to 35 miles,
maximum 42 southwest. Abated after 2:30 p. m., 15th.

Buffalo.-From 5 p. m., 13th, to 2 a. m., 14th, baroineter fell 1.05 reaching 27.89,
the lowest kuown here. Wind shifted from northeast to southwest at 3 a. m. and
blew a gale till after midnight, 11th, maximum 61 miles southwest at 4:10 p. m.,
13th. Gale continued till 4 p. mn., 15th.

This storm is noted by the Weatlier Bureau to have been a typical West India cyclono, developing east of the West Indies. It was one of tho exceptional cases, when such a storm passes inland, the storm center being near Charleston on morning of 13th with 60-mile velocity, immediately west of Washington, evening of 13th, 38 to $8 miles velocity; thenco passing rapidly over Buutalo and being north of Laké Ontario on morning of 11th. A very steep gradient existeil on morning of 14th over the whole country cast of Missouri River, which was not dissipated until evening of 15th. Ordinarily all storms approach this region from the westward, so that the gale does not commence at east end of the lake quite as early as at west end, In this case, its whole fury struck Lake Erie over its entire length at once. Its

« AnteriorContinuar »