Imágenes de páginas
PDF
EPUB

will depend upon the special work to be performed. Some vehicles, however, will have only two hoops, one on each side, but several small truck-wheels running on the inside of each. A vehicle of this pattern is not to be classed with a two-wheeled buggy, because it will maintain its equilibrium without being held in position by shafts or other similar means. So far as contact with the road is concerned it is two-wheeled; and yet, in its relation to the force of gravitation upon which its statical stability depends, it is a four or sixwheeler according to the number of the small truck-wheels with which it is fitted.

Traction engines carrying hoops twenty feet in height, or at any rate as high as may be found compatible with stability when referred to the available width on the road, will be capable of transporting goods at a cost much below that of horse traction. The limit of available height may be increased by the bringing of the two hoops closer to each other at the top than they are at the roadway, because the application of the principle does not demand that the hoops should stand absolutely erect.

Similar means will, no doubt, be tried for the achievement of a modified form of what has been dreamt of by cyclists under the name of a unicycle. This machine will resemble a

bicycle running on the inner rim of a hoop, and will probably attain to a higher speed for show purposes than the safety high-geared bicycle of the usual pattern. But it is in the development of goods traffic along ordinary roads that the hoop-rail principle will make its most noticeable progress. By its agency not only will the transport of goods along well-made roads become less costly and more expeditious, but localities in sparsely settled countries such as those beyond the Missouri in America and the interior regions of South Africa, Australia and China will become

much more readily accessible.

A traction-engine and automobile which can run across broad, almost trackless plains at the rate of fifteen miles an hour will bring within quick reach of civilisation many localities in which at present, for lack of such communication, rough men are apt to grow into semi-savages, while those who retain the instincts of civilisation look upon their exile as a living death. It will do more to enlighten the dark places of the earth than any other mechanical agency of the twentieth century.

122

CHAPTER VI.

SHIPS.

THE "cargo slave" and the "ocean greyhound" are already differentiated by marked characteristics, and in the twentieth century the divergence between the two types of vessels will become much accentuated. The object aimed at by the owners of cargo boats will be to secure the greatest possible economy of working, combined with a moderately good rate of speed, such as may ensure shippers against having to stand out of their capital locked up in the cargo for too long a period. Hence cheap power will become increasingly a desideratum, and the possible applications of natural sources of energy will be keenly scrutinised with a view to turning any feasible plan to advantage. The sailing ship, and the economic and constructive lines upon which it is built and worked, will be carefully overhauled with a view to finding how its deficiencies may be supplemented and its good points turned to account. One result of this renewed attention will be to confirm, for some little time,

66

the movement which showed itself during the past decade of the nineteenth century for an increase of sailing tonnage. Sooner or later, however, it will be recognised that sail power must be largely supplemented, even on the 'sailer," if it is to hold its own against steam. For mails and passengers, on the other hand, steam must more and more decidedly assert its supremacy. Yet the mail-packet of the twentieth century will be very different from packets which have "made the running" towards the close of the nineteenth. She will carry little or no cargo excepting specie, and goods of exceptionally high value in proportion to their weight and bulk. Nearly all her below-deck capacity, indeed, will be filled with machinery and fuel. She will be in other respects more like a floating hotel than the old ideal of a ship, her cellars, so to speak, being crammed with coal and her upper stories fitted luxuriously for sitting and bed rooms and brilliant with the electric light. But in size she will not necessarily be any larger than the nineteenth century type of mail steamer. Indeed the probability is that, on the average, the twentieth century mail-packets will be smaller, being built for speed rather than for magnificence or carrying capacity.

The turbine-engine will be the main factor

in working the approaching revolution in mail steamer construction. The special reason for this will consist in the fact that only by its adoption can the conditions mentioned above be fulfilled. With the ordinary reciprocating type of marine steam machinery it would be impossible to place, in a steamer of moderate tonnage, engines of a size suitable to enable it to attain a very high rate of speed, because the strain and vibration of the gigantic steel arms, pulling and pushing the huge cranks to turn the shafting, would knock the hull to pieces in a very short time. For this very reason, in fact, the marine architect and engineer have hitherto urged, with considerable force of argument, that high speed and large tonnage must go concomitantly. Practically, only a big steamer, with the old type of marine-engine, could be a very fast one, and, for ocean traffic at any rate, a smaller vessel must be regarded as out of the running. Very large tonnage being thus made a prime necessity, it followed that the space provided must be utilised, and this need has tended to perpetuate the combination of mail and passenger traffic with cargo carrying.

The first step towards the revolution was taken many years ago when the screw propeller was substituted for the paddle-wheel.

The

« AnteriorContinuar »